Математики 100 лет не могли описать текущую лаву. Но теперь все получилось

Как заброшенная гипотеза из 2000-х стала научной сенсацией.


38ad6ae70zfe2j39zoszhsytgqjkwgwx.jpg

Математики наконец решили столетнюю проблему, которая мешала описывать многие реальные физические процессы. Речь идёт о частных дифференциальных уравнениях — PDEs, которыми учёные описывают всё что угодно: траекторию шторма, движение цен на бирже, распространение болезни. Проблема в том, что эти уравнения часто настолько сложны, что решить их напрямую невозможно.

Обычно математики идут на хитрость. Даже если точное решение уравнения вычислить нельзя, можно попытаться доказать, что оно «регулярное» — то есть ведёт себя предсказуемо, без резких скачков, которые физически невозможны. Если решение регулярное, его можно приблизительно посчитать разными способами и лучше понять изучаемое явление.

Но множество PDEs, описывающих реальные ситуации, оставались недоступными. Математики не могли доказать, что их решения регулярные. Особенно это касалось определённого класса уравнений, теорию которого исследователи развивали целый век, но для одного подкласса она упорно не работала.

Теперь двое итальянских математиков наконец совершили прорыв , расширив теорию на эти сложные PDEs. Их статья, опубликованная прошлым летом, венчает амбициозный проект и впервые позволяет учёным описывать реальные явления, которые долго не поддавались математическому анализу.